\(\int \frac {x^2}{\log ^{\frac {5}{2}}(a x^n)} \, dx\) [143]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 89 \[ \int \frac {x^2}{\log ^{\frac {5}{2}}\left (a x^n\right )} \, dx=\frac {4 \sqrt {3 \pi } x^3 \left (a x^n\right )^{-3/n} \text {erfi}\left (\frac {\sqrt {3} \sqrt {\log \left (a x^n\right )}}{\sqrt {n}}\right )}{n^{5/2}}-\frac {2 x^3}{3 n \log ^{\frac {3}{2}}\left (a x^n\right )}-\frac {4 x^3}{n^2 \sqrt {\log \left (a x^n\right )}} \]

[Out]

-2/3*x^3/n/ln(a*x^n)^(3/2)+4*x^3*erfi(3^(1/2)*ln(a*x^n)^(1/2)/n^(1/2))*3^(1/2)*Pi^(1/2)/n^(5/2)/((a*x^n)^(3/n)
)-4*x^3/n^2/ln(a*x^n)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2343, 2347, 2211, 2235} \[ \int \frac {x^2}{\log ^{\frac {5}{2}}\left (a x^n\right )} \, dx=\frac {4 \sqrt {3 \pi } x^3 \left (a x^n\right )^{-3/n} \text {erfi}\left (\frac {\sqrt {3} \sqrt {\log \left (a x^n\right )}}{\sqrt {n}}\right )}{n^{5/2}}-\frac {4 x^3}{n^2 \sqrt {\log \left (a x^n\right )}}-\frac {2 x^3}{3 n \log ^{\frac {3}{2}}\left (a x^n\right )} \]

[In]

Int[x^2/Log[a*x^n]^(5/2),x]

[Out]

(4*Sqrt[3*Pi]*x^3*Erfi[(Sqrt[3]*Sqrt[Log[a*x^n]])/Sqrt[n]])/(n^(5/2)*(a*x^n)^(3/n)) - (2*x^3)/(3*n*Log[a*x^n]^
(3/2)) - (4*x^3)/(n^2*Sqrt[Log[a*x^n]])

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2343

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log
[c*x^n])^(p + 1)/(b*d*n*(p + 1))), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2347

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Dist[(d*x)^(m + 1)/(d*n*(c*x^n
)^((m + 1)/n)), Subst[Int[E^(((m + 1)/n)*x)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p}
, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 x^3}{3 n \log ^{\frac {3}{2}}\left (a x^n\right )}+\frac {2 \int \frac {x^2}{\log ^{\frac {3}{2}}\left (a x^n\right )} \, dx}{n} \\ & = -\frac {2 x^3}{3 n \log ^{\frac {3}{2}}\left (a x^n\right )}-\frac {4 x^3}{n^2 \sqrt {\log \left (a x^n\right )}}+\frac {12 \int \frac {x^2}{\sqrt {\log \left (a x^n\right )}} \, dx}{n^2} \\ & = -\frac {2 x^3}{3 n \log ^{\frac {3}{2}}\left (a x^n\right )}-\frac {4 x^3}{n^2 \sqrt {\log \left (a x^n\right )}}+\frac {\left (12 x^3 \left (a x^n\right )^{-3/n}\right ) \text {Subst}\left (\int \frac {e^{\frac {3 x}{n}}}{\sqrt {x}} \, dx,x,\log \left (a x^n\right )\right )}{n^3} \\ & = -\frac {2 x^3}{3 n \log ^{\frac {3}{2}}\left (a x^n\right )}-\frac {4 x^3}{n^2 \sqrt {\log \left (a x^n\right )}}+\frac {\left (24 x^3 \left (a x^n\right )^{-3/n}\right ) \text {Subst}\left (\int e^{\frac {3 x^2}{n}} \, dx,x,\sqrt {\log \left (a x^n\right )}\right )}{n^3} \\ & = \frac {4 \sqrt {3 \pi } x^3 \left (a x^n\right )^{-3/n} \text {erfi}\left (\frac {\sqrt {3} \sqrt {\log \left (a x^n\right )}}{\sqrt {n}}\right )}{n^{5/2}}-\frac {2 x^3}{3 n \log ^{\frac {3}{2}}\left (a x^n\right )}-\frac {4 x^3}{n^2 \sqrt {\log \left (a x^n\right )}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.03 \[ \int \frac {x^2}{\log ^{\frac {5}{2}}\left (a x^n\right )} \, dx=-\frac {2 x^3 \left (a x^n\right )^{-3/n} \left (6 \sqrt {3} n \Gamma \left (\frac {1}{2},-\frac {3 \log \left (a x^n\right )}{n}\right ) \left (-\frac {\log \left (a x^n\right )}{n}\right )^{3/2}+\left (a x^n\right )^{3/n} \left (n+6 \log \left (a x^n\right )\right )\right )}{3 n^2 \log ^{\frac {3}{2}}\left (a x^n\right )} \]

[In]

Integrate[x^2/Log[a*x^n]^(5/2),x]

[Out]

(-2*x^3*(6*Sqrt[3]*n*Gamma[1/2, (-3*Log[a*x^n])/n]*(-(Log[a*x^n]/n))^(3/2) + (a*x^n)^(3/n)*(n + 6*Log[a*x^n]))
)/(3*n^2*(a*x^n)^(3/n)*Log[a*x^n]^(3/2))

Maple [F]

\[\int \frac {x^{2}}{\ln \left (a \,x^{n}\right )^{\frac {5}{2}}}d x\]

[In]

int(x^2/ln(a*x^n)^(5/2),x)

[Out]

int(x^2/ln(a*x^n)^(5/2),x)

Fricas [F(-2)]

Exception generated. \[ \int \frac {x^2}{\log ^{\frac {5}{2}}\left (a x^n\right )} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^2/log(a*x^n)^(5/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {x^2}{\log ^{\frac {5}{2}}\left (a x^n\right )} \, dx=\int \frac {x^{2}}{\log {\left (a x^{n} \right )}^{\frac {5}{2}}}\, dx \]

[In]

integrate(x**2/ln(a*x**n)**(5/2),x)

[Out]

Integral(x**2/log(a*x**n)**(5/2), x)

Maxima [F]

\[ \int \frac {x^2}{\log ^{\frac {5}{2}}\left (a x^n\right )} \, dx=\int { \frac {x^{2}}{\log \left (a x^{n}\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x^2/log(a*x^n)^(5/2),x, algorithm="maxima")

[Out]

integrate(x^2/log(a*x^n)^(5/2), x)

Giac [F]

\[ \int \frac {x^2}{\log ^{\frac {5}{2}}\left (a x^n\right )} \, dx=\int { \frac {x^{2}}{\log \left (a x^{n}\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x^2/log(a*x^n)^(5/2),x, algorithm="giac")

[Out]

integrate(x^2/log(a*x^n)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\log ^{\frac {5}{2}}\left (a x^n\right )} \, dx=\int \frac {x^2}{{\ln \left (a\,x^n\right )}^{5/2}} \,d x \]

[In]

int(x^2/log(a*x^n)^(5/2),x)

[Out]

int(x^2/log(a*x^n)^(5/2), x)